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We present an explicit second-order-accurate Godunov finite difference method
for the solution of the equations of solid mechanics in one, two, and three spatial
dimensions. The solid mechanics equations are solved in nonconservation form, with
the novel application of a diffusion-like correction to enforce the gauge condition that
the deformation tensor be the gradient of a vector. Physically conserved flow variables
(e.g., mass, momentum, and energy) are strictly conserved; only the deformation
gradient field is not. Verification examples demonstrate the accurate capturing of
plastic and elastic shock waves across approximately five computational cells. 2D
and 3D results are obtained without spatial operator splitting 2001 Academic Press
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1. INTRODUCTION

In this work, we present a high-order Godunov method for computing in Eulerian co
dinates the multidimensional dynamics of elastic—plastic solids undergoing large defor
tions. Our approach is based on a new formulation of the equations of solid mechanic
a first-order system of hyperbolic partial differential equations (PDEs), a modification
that used by Trangenstein and Colella [25]. In [25], the usual conservation laws for m:
momentum, and energy, plus a constitutive model, are augmented by a form of equalit
mixed partial derivatives that yields conservation equations for the entries of the inve
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132 MILLER AND COLELLA

deformation gradient. This leads to equations of the form

%+V-F(U)=S(U). 1)
HereS(U) contains source terms associated with the treatment of plasticity. These equat
by themselves are not sufficient to specify the problem. In addition, we must impose lin
constraints on the solution to guarantee that the inverse of the deformation gradient i
fact a gradient, i.e., that the curl of the rows of the deformation gradient vanish. The
constraints can be written in the form

Lc(U) =0. 2

HereL ¢ is a system of linear differential operators with constant coefficients. The constra
equation is an initial-value constraint: if (1) is satisfied, andU) is identically zero at
some initial time, ther_c(U) vanishes identically for all later times. The constraint (2)
plays an essential role in the analysis of the characteristic structure of the system (1)
get the physically correct eigenvectors and eigenvalues from the quasilinear form of
equations, one must use the constraint to replace some of the spatial derivatives. In ger
solutions to (1), without imposing (2), give rise to unphysical wave propagation properti
even for linearized waves as was observed in [25].

A difficulty arises when one attempts to compute solutions to (1) and (2) using a cons
vative finite difference method. To the extent that a modified equation analysis is valid,
expect the behavior of the numerical solution to behave very similarly to the solutionto' 1
following system of PDEs:

ouU Mod

+ V- FUMY) = suMd) 4 7, (UMY

3)
Le UM% = ze (M),

Herery andzc are truncation error terms, which are nonzero. In general, these terms, ¢
in particularzc, cannot be eliminated. The practice of enforcing a discretized form of tf
constraint (2) at the end of each time step using a Hodge projection would guarantee tt
discretized form of (2) is satisfied identically. However, that will change the forra dfut
not set it to zero. The observation that the truncation error terms are a small perturba
to the equations is not sufficient to guarantee th¥e? is close toU. There is much less
known about the well-posedness of systems of equations that are combinations of evolt
equations and constraints than there is about pure evolution equations, and unexpe
pathologies are known to occur [17].

The approach we want to take on this problem starts with an analysis due to Godu
[8, 9]. Numerical methods based on this approach have been recently investigated fol
MHD equations in [20], the case for which Godunov first applied this analysis. Godun
modifies (1) in the following way:

U

W+V-F(U)=S(U)+$Lc(U). 4)
Here& = £(U) can be chosen so that the system has the physically correct lineari:
eigenstructure, independent of whethegy vanishes. In additionl.¢ satisfies a transport
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equation such that if ¢ (U) is identically zero at some time, then it remains so for all late
times.

The numerical method we present here is based on the form of the equations given by
Thus we are discretizing a well-posed initial value problem without constraints, independ
of whether the constraint (2) is satisfied. This gives us a high degree of confidence th
stable and consistent method can be developed. Of course, the extent to which we con
a solution to the original physical problem (1) and (2) depends strongly on whether
constraint is satisfied, but now that is purely an accuracy issue, without any impact on
stability of the method. In fact, we will investigate the use of various methods of limitin
discrete measures &fc, similar to filtering methods developed for incompressible flow
[112, 21].

Examples that demonstrate the method for elastic—plastic deformations of ahomogen
solid domain are presented. Aside from some simple one-dimensional problems that inv
free surfaces, methods for handling material interfaces (contact discontinuities) are
described here. To address more general engineering problems, including those conc
with fluid—solid coupling, our intent is to combine this solid mechanics method with
volume-of-fluid interface treatment analogous to [15].

2. GOVERNING EQUATIONS

The mechanical behavior of solids is described by observable variables (e.g., gensit
momentumpv, internal energyt, and the deformatiotF with respect to a chosen refer-
ence state) and also unobservable internal parameters which describe the response
material to deviatoric stress. One constitutive representation of this behavior is through
multiplicative decomposition of the total deformation into elastic and inelastic componel
[12],

F = FoFP. )

HereF is the Lagrangian coordinate deformation which relates the spatial coordinate fra
X = X(a, t) to the material coordinate franae

- 8aﬁ ’

Fup (6)
We refer toFP as the plastic deformation tensor, although the numerical scheme we v
present applies to more general inelastic deformations. According té PS5} a fictitious
state of total deformation in which there is no elastic deformation: given an initial total
formationF, and a purely elastic relaxation pattf — |, the total observable deformation
will evolve to FP, F — FP. The stateFP is a function of the deformation history of the
material. We represent this history through a single scalar paramegerork-hardening
measure, and constitutive flow rules

fp: h(p’ gvj:pag7K) (7)
k == K(,O, ga fpvgaK)a (8)

which depend on the state variables but not their gradients.
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The equations of solid mechanics are then given by

Pl 0
P of
PV PVVy — O € f
pE PEV. — Vp0pa p(¢+v} )T
g6 Qudye (v x(Vxg)) &
LN L gudye | x(Vxg)Te ©
at | 9% X Quds. S ox(Vxg)Te |’
P
,o}'pe>< pFPeu, phe,
prey pFPeyv, phg
preZ pFPev, ohe,
P PK U oK

wheree,, ey, ande, are the Cartesian unit vectors, akdis the sum of internal energy
and kinetic energylf = £ + %v - v). For generality, we include a heat source teprand
a body force vectoif. The system of equations (9) is abbreviated

AU aF,(U)
—+
at e

= S(U), (10)

whereU is the vector of quasi-conservation-form variablesdv, pE, etc....), F,(U) is

the flux in directione,, and whereS(U) is the vector of source terms. Here we follow the

treatment in [25] and use the inverse deformation gradjeat” ! as dependent variables.

However, we introduce additional nonconservative terms in the evolution equatigns o

We will show below that the addition of these terms leads to a well-behaved hyperbc

structure for the equations, independent of whether the cugl ofanishes. However, we

note here thag = V x g' satisfies the following evolution equation:
%—l—vo(vg—gv):& (12)

In particular, ifG vanishes identically at time= 0, it vanishes at all later times.

To solve these equations we adopt a predictor—corrector strategy. For each time stey
first solve the conservative flux differencing left-hand side of (10) using fluxes derived (
solution to Riemann problems) from edge- and time-centered variables that include tir
centered contributions from the source terms. The solution obtained by flux differenci
is then modified by addition of the source terms, evaluated using time-centered and ¢
centered variables, and acting over the full time si¢p

The solution to the flux differencing equations is based upon the standard high-or
Godunov strategy. This strategy begins with a characteristic analysis of the equatic
which makes use of the linearized 1D equations in direation

P o 0

v v f

& & d

g€ g6 0

5| 9& . gg 0
21 98 | +A ge | =| O |, (12)

ot FPe, 0%y FPe, he,

FPe, FPey he,

FPe, FPe, he,

K K K

o6, o6 bo{
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where
Ve pel 0 O 0 0 0 0 0 O 0
0 V| 0 O 0 0 0 0 0 0 —l/p
0 —(ce)'/p vy, O 0 0 0 0 0 O 0
0 8% 0 v O 0 0 0 0O O 0
0 Wy 0 0 vl O 0 0 0 O 0
A=1]0 0820 0 O 0 vl O 0 0O O 0 (13)
0 0 0O O 0 0 vl O 0O O 0
0 0 0O O 0 0 0 v,/ 0 O 0
0 0 0O O 0 0 0 0 vl O 0
0 0 0O O 0 0 0 0 0 v, 0
0 —Aga 0 O 0 0 0 0 0 0 w,l
with
006,
A = =529 (14)
P bge
and
doe, doe, doe,
b, = *h K4+ —. 15
aFP + oK + o (15)

The eigenvalue decomposition Afuses the technique of eigenvalue deflation and hinge
upon recognition of the matrice4,, as being acoustic wave propagation tensors for wave
traveling in directiore,,

32U5

—_— 16
0Xg X, (16)

puﬂ = (-Aaot)ys

whereu is the displacement vector. The matricég, are positive definite as a requirement
of thermodynamic stability. This is made clear by writidg,, in terms of gradients of the
spatial displacementsdefined relative to the current configuration,

9%E

S 17
P 905000, an

(Aoza)ﬂy =

Here, (g, is related to the deformation tenség, with the reference coordinate frar{e}
chosen to correspond to the current spatial frgrje

Uge = Fpaliay=px) — Spa- (18)

Aq. is therefore a component of the Hessian &fwhich is positive definite for a
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thermodynamically stable material, and consequedtly has positive real eigenvalues
and three linearly independent eigenvectors.
RecognizingA,, as being the acoustic wave propagation tensor suggests the wave ec

tion solution
Ago Xac = ancAgc’ (19)

where A ¢ is the diagonal matrix of acoustic wave speeds 5. = diag(c, ¢, C3), and
Xac are the acoustic displacement vectors.
The linearized 1D matridA then has eigenvalue decomposition

A= XAX (20)

with X, the matrix of right eigenvectors, given by

100000000 —pelXae  —p€ Xac
0000O0OGO0O0 0 XacAac —XacAac
0100000 0 0(@e) Xac/p (08)TXac/p
001 000 OO0 0 —gXacdrae  —9Xacdxa
0001 00000 —gXacdyy —gXachya
X=]00001 0000 -gXacda —9Xacba |. (21)
000O0OI O0O0O 0 0
0000O0OI 00O 0 0
0000O0OOI O 0 0
0000O00O0O0GO01 0 0
000000 OO0 0 XgA2p XacA2.p

andA, the diagonal matrix of eigenvalues, given by

v, 0 O 0 0 0 0 0O O 0 0
0 v, O 0 0 0 0 0O O 0 0
0 0 w! O 0 0 0 0 O 0 0
0 0 0 vl O 0 0 0O O 0 0
0O 0 O 0 vl O 0 0O O 0 0
A=10 0 O 0 0 wv! O 0 O 0 0 (22)
0O 0 O 0 0 0 w! 0 O 0 0
0O 0 O 0 0 0 0 vl O 0 0
0O 0 O 0 0 0 0 0 vy 0 0
0O 0 O 0 0 0 0 0 0 vyl —Agac 0
0O 0 O 0 0 0 0 0O O 0 Vol + Aac

The wave speeds are Galilean invariant and properly analogous to the Lagrang
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representation, with 3 waves with velocities,, — ¢,, 34 waves with velocities,, + ¢, ,
and 21 material waves with speegs
X1, the inverse ofX, is given by

1 0 00000000 &XacA2Xd

0 0 100000 0 0—(06) XacAz2X5/p?

0 0 01 00000 0 gXacAs2Xoloxa/p

0 0 001 0000 0 gXaeAs2Xsldya/p

0 0 0001 000 0 gXecA2X:L55/p
X7t= 19 0 00001 000 0 - (23)

0 0 000001 00 0

0 0 0000001 O 0

0 0 00000GO0OI 0

0 ZAX;2 00 0O0O0O0O0TO ALK

0 —3A;1X;2 00 00 0O0O0O 2 ALK

3. NUMERICAL METHOD: 1D

In 1D we discretize space into cells, indexed with subsériptith width Ax;. Time is
discretized in steps akt with integer superscript index t"+! — t" = At. The generaliza-
tion to 2D and 3D is similar, with indicepandk used for the second and third dimensions
respectively. Half-integral subscript indices represent edge-centered quantities. Lower
Greek subscripts are used to denote vector and tensor indices.

We begin by evaluation of the equation of state in each cell to determine the Cau
stresso, the acoustic wave propagation tensty,, and the thermodynamic derivatives
30 /0E|g 7., 30/3Qe 7o, 35 /DFPle.g.c, aNdda /3| g o

Next, we evaluate the 1D slopds/dx, of the 27 primitive cell-centered variablgs

a=1(0,v,8,9,FP k,08). (24)

We construct these slopes beginning with the van Leer slope in aeflich uses the
monotonized limiter [26]:

vl . — . . . . — .
(8q> =sign(qi+1—qi_1)min( 2|Gi+1 — Gi-1 2|q.AXg.71|’ 2|q.+Ale q.|>_
1 1

X /; AXi_1+ 2AX; + AXip1
(25)
A fourth-order-accurate slope is then constructed as [5]
p vl p vl
(3q>«h (9 —donalI] - JoardaaGOL) o
x), TAX 1+ AX + 1A% '
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To prevent overshoot and ringing, dissipation at strong shocks may be introduced v
“flattening parametery, 0 < x < 1, whence [5-7]

4th
() ()

The determination of this flattening parameter is described in a later section.
These limited slopes are used to construct time-centered, edge-valued estimates c
primitive variables. The exact solution of the linearized equations, which we abbreviate

a9 a9
— tA_-=s 28
ot + X (28)
gives time-centered edge values
AXi At aq At
n+1/2 _ | . ) -1 .
Uri-12 =0 — > Xi <Axi A+ |>Xi (8)(), +58 (29a)
AX; At aq At
1/2 i _
QE,+i+1/2 =q' - > X <AXi Aj — |>Xi 1(8)(>i + 73. (29b)

However, this construction uses both upwind and downwind characteristics. We make
method strictly upwind by filtering out the downwind characteristics:

1/2 AX At _ Bq At
qg—,‘i_—/l/Z = qirI - TIXirpf <A—X|Al + |)X| l(&)i + 73 (303)
1/2 AX At _1/ 09 At
qE?ir-k/l/z =q' - 7‘Xﬂ’+ <AXiAi - |>Xi l({ix | + ?S (30b)
with projection operator®.. defined as
At ﬁAO{Ot + 1 80{ AOtO[ S o
(P(—A+|)> _ & )es (31a)
AX aff 0 Aowz >0
At
At _AOtOl -1 801 Aaa = O
<P+<A— |)> _ & ) (31b)
AX af 0 Aota < 0.

At each cell edgéi + 1/2), time-centered values are thus obtained from the ilgfir{d
right (i + 1) neighboring cells. These edge values are then used to pose a Riemann prob
an initial value problem with constant left and right initial states giverqﬁ;li/f/2 and

qgﬁﬂf/z, respectively. We approximate the solution to the Riemann problem by decompos

the jumpqgﬁ/f/2 - qfﬁ/f/z in terms of the eigenvectops of the linearized coefficients.

Specifically,
27
n+1/2 n+1/2
qR,i+/1/2 - QL,i+/1/2 = Z @y Xy it1/2, (32)
y=1

where eigenvector columX,, i1/, is evaluated with certaih or celli properties ifA,,
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is a member of the- family (i.e., of the formve, — ), or with certainR or cell-{ + 1)
properties ifA,, is a member of ther- family (of the formve, +c), as given by the
discretization

1000000 0 0 —pelXa —pi+1€) Xacit+1
0 00O OO OOTUOTD Xaci Nacii —Xaci+1Aaci+1
010000000 @ume (Canty) Yot
0 0 | 0 00O OO0 —gi+1/2,LXac,i8xa —gi+1/2,RXac,i+16Xot
Xit12 = 0 001 000 0 O —gi12LXacidye —UGit1/2RXaci+18ya
0 00 O0O1I OO0 0 0 —Gt+12LXacidza —0i+1/2,RXaci+102
000O0O0I 0O0O 0 0
0000O0OI 00O 0 0
000O0O0OGOI O 0 0
000O0O0OTO 0T O 1 0 0
000O0O0O0O0 0 0 XaiAln Xaci+1A2¢ i 4101+1
(33)

In this expression, the densijty and the componentX(., Aac) of the acoustic propagation
tensor, are evaluated at the cell centers to avoid multiple evaluations of the equatio

state.

From the coefficients, of the jump decomposition, the material velocity- e, at the
cell edge is determined by adding to thestate the contributions of the family, or by
subtracting from theR state the contributions of the family, that is,

Vi1 € = vt = v €+ 06 Xesit12 + 07 X7p01/2 + 08 Xepivrz  (34)
or
V10 8 = VN = vit12R - €& — 99Xopit12 — 010X10i 412 — pr1Xuipis1jz. (35)

whereg = 2, 3, 4 for directionsg, equal toey, ey, &, respectively. We average the results
of these calculations to determine the normal-direction edge velotitg,,

1
Uitz € = E(U*L +v*R). (36)

For other properties to be evaluated at the cell edge as solutions to the Riemann prol
we do not average the values evaluated fromLtlend theR states as above. Instead, we
evaluate from thé state ifv* - e, is positive, or from theR state ifv* - e, is negative. Only
if v* - &, is approximately zero do we average these estimates. The evaluations include
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upwind characteristics by writing

UiriaL + 20, wWey@y Xy Ui B > €
Orre = 4§ Gir2R+ 20, WRy®y Xy U1z & < —€ (37)
$(Gis12L + Gisr2R + >, (wey + wry)ey X,) !vi*+1/2 | <e

with
1 Ayyi—vi-8 40, 6 <—¢
we, = yrd TV G T Vg2 G (38a)
0 otherwise
e, = 1 Ayy,i+l-_ Vipl € Uy 6 > € (38b)
0 otherwise

The value ofw_, is 1 when eigenvalug, estimated using the value of the material
velocity together with the cell-centered acoustic wave speeds, is negativeuangd is
0 otherwise;wgr, is 1 when the approximated value of eigenvajués positive and 0
otherwise. In our computations presented below, we use a vakie-af0—°.

By this procedure, we obtain the edgesalue solutions of the Riemann problepf;,
v¥, &, g%, FP*, «*, and(oe))*. These are then used to compute edge-valued fluxes («
(9, 10)). For example, in directiosy,

PUx
pvf — Oxx
PUyUx — Oyx
PUzVx — Ozx
PEvx — vyoxx — VyOyx — UzO0zx
vxg& + vygey + v.g€;
0
0
PV FPey
puxFPey
pv FPe,

Frit12 = (39)

Pk i+1/2

In 1D we obtain a preliminary updaté of the variables) by conservatively differencing
the fluxes:

~ At .
Uin+1 =U" - A7)(i(|:;§w2 — Fi_l/z). (40)

The final time¢n + 1) value of the variable§l is obtained from the preliminary valuéks
by addition of the source tern$

UMt = M 4 AtS. (41)
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We discretize this in the general 3D (Cartesian) case as

0
+1/2 ¢n+1/2
pin /. fin /

+1/2 +1/2 +1/2 +1/2 +1/2 +12 +1/2
pi“ /(q>n+l/2+v2,i / fxn,i / +v;,i / fn / +v n / f”l /)

vn-tl/Z ( 12ik® ~Fo12jk® O jraak® O 1ok )
y.ijk AXi AYj

vn+1/2 ( O ~ O o™ Gl k& — 912k )}
zijk Az AX

Un+1/2 ( 9 iry2k8 — O _10k8 gnf].k+1/zey — 9 k128 )
zjijk Ay AzZy

n+1 _ (yn+l n+l/2 Gr12ik® ~F12ik®  Fjraex®— O 128
UMt =00 4 At — vyijk ( A% Ay, )}

12 ( Gike12® ~ Finc1o® G2 ik® — G a0k )
X,ijk Az AX;

n+1/2 ( Giv12k® — I 1ok Fjke1® G jke0® )}
y ijk Ayj Az

n+1/2,.n+1/2
Pijk " hijk &
n+1/2, n+1/2
Pijk " hij ey
n+1/2,.n+1/2
Pij "~ Nij e,

n+1/2,, n+1/2
Pijk Kijk

(42)

In 1D we use the 3D discretization above but retain only termy ix andd?/9x? and
omit derivatives in all transverse directions.

In the above expression, time-centered terms (g : 12

) are estimated with

Q|r}:1/2 (qu + Q|n+l) ’ (43)

except for theg*s appearing in thév x G) terms. These are obtained at the half time ste
and cell edges as components of the Riemann problem solutions.

4. NUMERICAL METHOD: 2D AND 3D

To extend the 1D method described above to multiple spatial dimensions, we us

spatially unsplit fully corner-coupled second-order-accurate scheme after [6, 22]. In -
this predictor—corrector approach begins by estimating the addy fluxes at each cell
edge, using the higher order 1D approach described in the previous section. These prec
fluxes,F and Ify, are given schematically as solutions to the Riemann proRegs

~X 1/2 1/2
Fit12; = Fx (R(qQJLrlérl/Z] q;]JFE./H/z J)) (44a)

1/2 1/2
FI j+1/2 = FY(R(q;JLrl/Hl/Z’ q%l/wl/z)) (44b)
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The predictor fluxes are used to pose a corrector problem, wherein the edge values
augmented by transverse predictor fluxes. Schematically,

1172 +1/2
Frivizj = K (R(q;nL,iil/Z,j ) q;nR,iil/Z,j ) (45a)
nt+1/2 n+1/2
Fyij+y2 = Fy(R(qynL,i,/jH/z» qynR,i,/j+l/2)) (45D)
with, for example,
At~ ~
n+1/2 172 y y
q :L,i/+1/2,j = q;tiil/z,j - m(Fi,j+l/2 - Fi,jfl/Z)
At n =Y &Y T\T
+ a2 (vl x ey x (802 = 8jo12) ), T 8). (46)
yl ys

The vectorT is introduced to align the elements of the matfixx V x g")T with the
appropriate elements of the vectpr

I'(r,s) = (0,0,0,0,0, 8,181, 82851, §,38s1, 6,,1852, 8, 2852, 8,3852,
8,1853, 8,2853, 8,3853,0,0,0,0,0,0,0,0,0,0,0,0,0)". (47)

In 2D there are therefore four Riemann problems solved per cell: two in the predic
and two in the corrector steps.

In setting up the corrector step, the components &, g, P, andkx of the vectorgy’ are
updated as indicated in Eq. (46). Our 1D Riemann solver also requires time-centered ¢
values of the stresse@re, ), ,r in directione,, and these components gfare calculated
by updating th&oe,),,r components off_,r with the change in stress accompanying the
changesy; ;g —du/r in €, g, FP, andk using cell-centered thermodynamic derivatives.
For example,

00 €y
o€

(@'8ILi+1/2) = (O8ILi+1/2] + (
(o
G
2 (5

By employing this approximation we require only one equation-of-state evaluation per til
step per cell for problems involving only elasticity. In problems that also include plasticit
additional equation-of-state evaluations are required for the computation of plastic soL
terms.

In 3D there are two corrector steps: first,

n
!
> (5L,i+1/2,j - 5L,i+l/2.J')
9.FP.«/ ij

n
!/ . .
(KL,i+1/2,j —KL.|+1A,2,1)
g.7P.£/ ij

n

B ((9s)Liv12j — (Go)Litis2)

gaégysqumg) 1

n

((‘7:}?5);_,#1/2,] - (‘F)PB)L.i-rl/Z,j)' (48)

g,fpyé]-‘fg,x,f)ij

=X

n+1/2 n+1/2
Fiizik = PRS2 0 BRrit12ik) (49a)
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FL vz = Fy (R 1200 GYRT Foa/210)) (49b)
Frikiae = F(R(G1 Pnyo Gomi feia2)) (49c)
and then
F ik = Fe(R(AD T 1m e OB 1/a ) (50a)
B = BRI, gl ) (500)
F ok = By (R Dok 08T 1 a24)) (50c)
B ez = Fy (ROG2T 2k R e1724)) (50d)
lfilik+1/2 = F,(R(d] Oﬁ)inﬁ/fl/zv /zﬁ:]ﬁ/fl/z)) (50e)
'£|Z|Jyk+1/2 =k (R(q/z({)rﬁ/fl/zv q/z(R)FT]l;/Jrzl/Z))’ (50)
with, e.g.,
SR = i~ 5ay (B s~ Bl
At | y oy T\T
+ fy, Z (Ui’j,k X €y X (gi,j+1/2,k - gi,jfl/z,k) )yaF(V’ 8). (51)

y8

The final fluxes, which enter the conservative differencing step of the integration, :
then computed as

n+1/2 n+1/2
Frityzjk = P (R0, i+1/2,j.k> q>/(/RI+l/2 j. k) (52a)
n+1/2 nt+1/2
Fyij+12k = Fy(R(quu i+1/2.k q;’R. i+1/2, k)) (52b)
n+1/2 n+1/2
Frijkrz = F2(R(a 7 i kt1/2> AR, i k+1/2)) (52¢)
with, e.g.,
12 n+1/2 At =y 2yz At =gy =zly
Ol 14172,k = OLit1/2,jk— 20y, (Fiia2k—Fij_12x) — 227 (Fiikiz—Fiik-12)
i
(At n &7 _ gz "N o s
+ : Z(vi,j,k x ey % (G ok — Oio12k) )T (s 0
2AYy; ” 4
A S x e x (@ an — 1)) TG ) (53)
s ik X € XY jkr12 = Gijk-172) )5t (V5 0)
y8

There are a total of 12 Riemann solves per unit cell in 3D: 9 in the predictor steps an
in the corrector step. The components of the vectogs andq” are computed as in the 2D
case.

5. PLASTIC SOURCE TERMS

We present here an associated plasticity evolution equation for the rate of chang
the plastic deformation tensd@® with time. The more common approach (e.g., [19, 23])
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is to consider evolution equations for the plastic strgin= %(]-'pT]-'p — 1), the plastic
Green tenso€P = FPTFP, or the plastic Finger tensbP = FPFPT. We choose instead
to evolve the full nine-component plastic deformation ters88r This choice is necessary
to be capable of modeling arbitrary crystal systems (see, e.g., [24]). For example, the el:
response of the lowest symmetry crystal system (triclinic) depends upon all six compone
of the elastic Green tensor. If one were to specify the total inverse deformgtiand
eithernP, CP, or bP, then all six components d&® could not be determined. Although
our examples will make use of isotropic equation of state models (whose elastic invarie
may be determined usirggandCP), our goal is to construct a framework of more genera
applicability.

To motivate our choice of evolution equationsfof we begin by postulating the existence
of a hyperelastic equation of state,

£=£E(, F«,S), (54)

whereS is the specific entropy. The material derivativeSol

3E 3E 9 9. 1
= ¢ 75, (208 = oy Foulus + . 55
30es +afp T T as 0Py valep (55)

where the second equality equates energy change with the sum of work and heat. Sol
for entropy production (dissipation) we have

. 1[05F O 196 ., 10E. a8
0<§=—=(%rlre s — ——— P _ 0 L P
= T( b g )% T oFn,” Tock T ae

1
= _(\ijlast‘l‘ lI"therm)- (56)
pT

Hered&/0S = T is the temperature, and we have introduced the specific power of thern
dissipation,

Wiherm= 0P, (57)

and the specific power of plastic dissipation,

& o€
Wplast= —p 8?;5 -7: Pal(

= gﬁyaﬁ‘?:;aftfﬂ — UK
= gﬁyayéfévgfaffﬁ — vk
— xRk (58)

with ¢ = pd&/dk being the work-hardening moduIUs‘,ﬁ = = (FP);, 1]-' p is the
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plastic distortion rate [14], anllg, = gg, 0,5Fs, iS the thermodynamic force conjugate to
LP. The dependence of on 0.p Vanishes because

&

> %a- 59
95,5 % (59)

Oup = —pP

In evaluating (58) we have assumed tfatepends oig and.FP only through the elastic
deformationf® = FgP = (FPg)~%, eqg.,

E=E(F8 S, k), (60)
whence
o0& 1
8‘7023 Sk = _Egﬁyayﬁf§a~ (61)

Thermodynamics requires that the internal energy depends upon the volume, and wi
sume by (60) that this energy dependence is carried by the t&f§serg.,V = Vydet F€.
For this to be true, it is necessary that #&t= 1 at all times (i.e..V = VodetF =
VodetFedetFP; V = VpodetFeiff det 7P = 1.) Therefore, (60) assumes that plastic flow
is volume-preserving.

We postulate a plastic yield surfade= 0, which we represent for illustrative purposes
with a Mises—Huber constitutive model written in terms of the Cauchy streasonstant
yield stress parametex, and the work-hardening modulus

f(o,9) = ||devo| — \/E(O’Y + ). (62)

Here,dew =0 — %(tra)l is the stress deviator, afid\|| is the Schur norm oA, || A||2 =
Ays Ao = tr(AT A).

The flow model we adopt is derived from (62) by the postulate of maximum plas
dissipation [10, 13]. The plastic dissipation (58) is considered as a function of the vadiable
andy, with fixed parameterkP andk; Wpjast = Wpiast(X, 05 LP, k). The plastic dissipation
is then maximized with respectBandi, subjectto the constraint that= 0 during plastic
flow. The resulting flow laws are

devio)
[devo) ]

K= E\/g (64)

with ¢ a parameter chosen to satisfy the Kuhn—Tucker complementarity conditions and
“consistency condition” [23]

FP = ¢FPg (63)

f=0 (65)
=0 (66)
(f=0 (67)

cf=0(ff=0). (68)
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The flow model (63) is consistent with the assumption that plastic flow is volum:
preserving,

(detFP) = (detFP)g’ 7P

_ Py P P (deVO')ﬁy
(devo)qa
= py e
Z(detFP) Idever|
=0because tdevo) = 0, (69)

and is therefore compatible with the assumption made in evaludting (58).
As an example, we use a modified Mooney—Rivlin equation of state,

(S) (S)

poE(C8, S) = (S) 2= (InV/detCe)? + trCc® — log detC®

D 1
+ —p ‘jo 0 ( + ﬁ—le—%K) (70)

whereCE€ is the elastic Green tensor,
Ce=FeTFe (71)

This equation of state gives a work-hardening modulus,
&
(k) = Poe = Po(1— "), (72)
K

in terms of two parametersy is the ultimate, asymptotic value of the work-hardening
modulus, and); dictates the rate of approach of the asymptotic limit.

The combined elastic—plastic evolution problem is solved with a predictor—correct
strategy. The inverse total deformatignis advanced in accordance with the equation:s
of motion, with the plastic deformatiaA® being conservatively advected. This step may
predict a coordinate in state space that lies outside the convex manifold of permissible s
f (o, 9) < 0, in which case a plastic corrector step is used to bring state back to the yi
surface. The algorithmic approach is a return mapping algorithm [23], modified to requ
only one equation-of-state evaluation.

Begin the iteration sequence with iteration inaex= 0,

FPO — ppn+l
K(O) — Kn+1
c©® — 0(gn+1 FPn+l Kn+1) (73)
19(0) — 19(/{”"'1)
There is one equation-of-state evaluation at the beginning of the iteration in which

Cauchy stress, work-hardening modulug, and the derivativedo/0FPlg g, 9o/
dk|e g 70, @andad/dk, are calculated. Next, evaluate the yield criterion

fm _ f(a(m), ﬂ(m)). (74)
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If m=0 andf™ < ¢, then the state point is interior to the yield surface, and no plast
flow occurs. Iff @ > ¢ and| f™| < ¢, then

FP n+1 }"D(m)

(75)
(M e
and stop. Otherwise, calculate; ™ = ¢ ™D _ M ysing Newton’s method
dfmy
AL™ = —fMf— 76
¢ dc (76)

with d f/d¢ estimated from
d fm AF\N™[/ 9o dFP\ ™ do dic\ ™
&~ () Al (&) + (&) (&)
At \™ o9 [di\™
— — ) — . 77
+<aﬁ) (ax)<d¢> (77)
Next, calculate revised estimates

r (m)
j:‘p — ]_-p(m) + (88‘7:;) Aé-(m)

FPMHD — (detFP)~V3EP

k™
™MD — () A;“(m) (78)
¢
do do
(m+1) _ O p(m+1) p(0) (Mm+1) 0
o =0+ (— > F -F + (— ) K — K
0FP e g ( ) 0K | g g 7o ( )

ﬁ(m+1) — ﬂ(K(m+1))

setm < m+ 1, and retest the stopping criterion.

In this procedure we evaluate the equation of state once to detesmamel the ther-
modynamic derivative§o/dFP|q ¢, anddo/dk|ge ro. The stressr™, for m > 0, is
approximated by first-order Taylor expansion about the initiak O value. The method
convergesin 1 or 2 iterations, wigh= 1075, in each of the test problems involving plasticity
described below.

The framework described by Eq. (9) calls for rates of plastic deforméatimd rates of
work hardeningK. In the example above, which is rate-independent, we use

th = AFP (79a)
K = Ak, (79b)
wheret = At/2 in the predictor step of the method (Egs. (30a) and (30b)raadAt in

the corrector (Eq. (41)). A generalization of this approach to rate-dependent plasticit
described in [19].
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6. DISSIPATION

In certain problems in hydrodynamics it has been found that the higher order Godur
strategy we adapted here will give rise to spurious post-shock oscillations (e.g., [5])
solution that rectifies this problem is the addition of a small amount of dissipation at stro
shocks. This dissipation is added by introducing an additional slope limiter via a “flattenin
parametery (see Eqg. (27)).

A variety of flattening strategies have been proposed. Perhaps the simplest variant,
ployed by Miller and Puckett [15], uses the divergence of the velocity to detect potent
shocks, and uses a simple measure of shock strength, the ratio of pressure jump a
a cell to the isentropic bulk modulugA P|/Ks whereKs = dP/dlogp|s, to compute
a flattening measure. This introduces additional dissipation in regions where the pres:
change is large compared to the bulk modulus—where linearization of the equation of s
is expected to become error-prone. This strategy may introduce extra dissipation in reg
that do not require it, however, as when a shock is spread over a lafger(6) number
of grid cells. It is therefore desirable to also include measures of the shock structure
minimize application of this dissipation mechanism.

Elaborate strategies for computiggare described by Colella and Woodward [7]. One
of their strategies is to restrict the use of this dissipative mechanism to regions where
detected shockis steep. In our solid mechanics computations we found this strategy to be
ful, and in conjunction with a measure of shock strength it provides judicious, adequ
additional dissipation.

We detect a strong shock by measuring in 1D the divergence of the velocity field, &
calculating a normalized jump in stress. We define

- o&)itr — (0&)i-1lleo
' (det-Aota,i)l/s

(80)

as a measure of shock strength in the neighborhood of etlirectiong,. The numerator
is the maximum of the absolute value of the jump in those stress components that r
change in directiom, 1D purely elastic flow, and the denominator is a mean modulus c
the acoustic propagation tensor in directegn

Following Colella and Woodward, we discriminate between steep and broad shocks
the ratio

_lioe)itv1 — (0&)i—1lleo

Ai= (oe)ite — (0€)i—2llso

(81)

In the limit g; = % stress is approximately linear across five grid cells, and so a sho
discontinuity is not being captured. Whegh~ 1 the discontinuity is captured in three

cells: the shock may be overly steep and postshock oscillations are expected. Accordir
the minimum value that our flattening paramegeshould have, based upon shock steepnes:

IS
. a; — bi
Xmini = max(os mm(l, liﬁl, >>7 (82)
a1 — Qo

whereag anda; are numerical constants. We use the vahges 0.75 anda; = 0.85in the
computations presented here.
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A local shock-strength-sensitive flattening paramegtetimini < Xi < 1, is thus

Xi = (83)

. min(1, maX(Z:i‘), xmini)) (V-€)iz1 < (v-€)ia
1 otherwise
In our example calculations we use the numerical vaildes 0.25 andz; = 0.75.
In 1D we limit the slopes by the minimum over nearest neighbor cells of the loc
flattening parameter,

Xi = Min(Xi—1, Xi, Xi+1)- (84)

In higher dimensions, we employ the same 1D local flattening parameters—meast
separately in each direction. All slopes)/ax, 0q/dy, anddq/dz) are limited by the same
cell-valued flattening parameter, which is given by the minimum of the directional loc
measures. In 2D,

Xii = MiNCGci—1,j Xxiijs Xxi+Ljs Xyisj—1s Xyiirjs Xyisj+1)s (85)
and in 3D,

Xijk = MINCXi—1, 5.k Xxi, ko XGi+1j ks Xy, j=Lks Xyii,jko

Xy i+Lks Xzi,j k=1s Xzi,j.k> Xzi,jk+1)- (86)

7. ACCURACY

The term(v x V x g")T was introduced to the evolution equations of the inverse defo
mation gradieng to make the system of equations stable and well-posed when the ga
constrainv x g" = 0 fails to be satisfied. Although the partial differential equations sho
that when satisfied initially, it will be satisfied for all times, numerical errors cause tt
constraint to be violated to some degree.

We propose a modification of (9) to control inaccuracy that may arise from violation of tl
gauge constraint. The conservation law (11) indicatesghatll be created by numerical
errors as dipoles. Thus, a numerical strategy that will control this truncation error is
diffuseg,

ad
V(G — Gv) = DY) (87)
or, equivalently,
998 i(gv) =wxG'e,-DVxGeg (88)
ot o, '

g is also related to the density via

p = podetg, (89)
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wherepg is the mass density in the reference stéte- g = | . Multiplying the g equations
by podet(g)g~", and summing over the nine componentg gfives a conservation law for

o = podet(g):

P v ow = (90)
Thus the continuity equation is embodied in thequations as well. However, because
of discretization errors the equivalencewérid the mass densigycannot be assured. To
make the method strictly conservative, we keeas a redundant variable, and we invoke
a relaxation mechanism o to enforce the conditiom = p. This relaxation alone (not
including the diffusion modification) is accomplished by writing

9 9
% + —(gv) wxG)e +n (g - 1> ge&,. (91)

The “continuity” equation fopis then

Dp Dg. R . A

Df_ PFpa &ﬂ_—wV-w+nﬁAvxgma+&ﬂp—p) (92)
ap
e +V.-(pv)=3n(p—p) wheng=0. (93)

Including the diffusion and relaxation terms, the system of equations we will solve is

Py
; g~ o8
oE PEv, — vgop,
ge QUéxa
gey " 0 gv(sya
at| 9% Xy Uz
P
pipex pFPecu,
e
P ; Yy pFPeyv,
’0]:Kez oFPe,v,
P PK Vg
0
of 0
p(®+v-f) 0
(v X g)Te]_ _D(V X g)TeX + U(poé)etg - l)ge)(
_| ox9Te | TPV x D ey (kg — L)osy (94)
. .
(vx G)'es —D(V x )&, +1( e — 1) 98
phe 0
rhey 0
phe, 0
pK 0
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Our discretization of the diffusion and relaxation terms takes the form

sn+1 ~
n+1 TR —D(V x §)""ex + n(mgei:@”“ — 1)§" ey
gex ge)( ~n+1 ~
gg | =(dg| +at| PVxOTey+n(GEmn -~ ey | (95)
9€./;; ge i T, s+l a1
2/ ijk 2/ ik —-D(V xG)'"e, + T](poé)etgnﬂ — 1)gn+ e,

ijk

whereg"*! denoteg after flux differencing and evaluation of source terms in (10) (cf. (40))
The second derivatives gfappearing in thg diffusion term,

[m _ 920x [3zgxx _ Z’zgxy [3zgxy _ m
X9z 972 yax ax2 23y ay?
angy azgxx azgxz 329xy 329xx azgxz
+ axay  9y? ] + ayoz = o7 ] + 5% — o ]
[azgyz _ 9%gyx [329yx %0y [azgyy _ gy
v g)T X9z 022 axay ax2 yoz ay? (96)
X =
+ Py azgyXJ + %9y 329yy] + %gyx 329y2] ’
Xy ay2 ydz 922 X9z ax2
[azgzz _ azsz [azgzx _ 32913’ [azgly —_ 82922
X9z 022 aXay Ix2 ayoz ay?
ngZV azgzx gzz 329211 32gzx azgzz
+ axdy  0y? ] + ayoz 972 ] + 5%z — e ]

are computed using time-<cell-centered values @f, with a standard three-point stencil for
homogeneous second derivatives, e.g.,

(az_g> _ 1 (Z(Qin+1,jk — Oijk) _ 2(9f — gin_l'jk)> (97)
k

X2 i AXi AXiy1 + AX; AXi + AXi_1

and heterogeneous derivatives are computed with a four-point stencil, e.qg.,

( d%g ) _4 Otk — 901k — 91 ok T O 1 1k (98)
ijk

aXay /i (AXi—1+ 2A% + AXi11)(AYj_1 + 2AY) + Ayji1)

A von Neumann stability analysis of the diffusion update in (94), considered indepe
dently of other source terms or the basic solid mechanics equations, gives a bound ol
diffusion coefficient:

h2 .
o in 1D,

D<{ ™ (99)
o in2Dor3D

This suggests an approximate overall Courant—Friedrichs—Lewy stability criterion of

At(Jv] 4 Cmax) 2DAt H

C L B AXC + (AX)2 n 1D, (100)
Atfutem) | 4PA 0 2D 0r 3D

CFL < 1, (101)

where hereitisassumed thiak = Ay = Az, a constant. The more rigorous CFL condition

CFL = max( A1t tmad ;‘f}ﬁg) (in 2D or 3D) would hold if the mechanics equations anc

G diffusion steps were performed sequentially.
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The optimal damping conditions for the diffusion Gfare obtained by choosing the
empirical diffusion constarib to satisfy

_(Ax)?
T o4dAt’

(102)

whered = 1, 2, 3 is the dimensionality of the problem. Similarly, optimal relaxation is
obtained by choosing the empirical relaxation parametersatisfy

1

— 1
6AL (103)

T} =
for all dimensions. According to the approximate CFL condition (101), the optimal valt
of D will contribute 1/2 to the CFL value in 1D and 2D, and3.in 3D, limiting the overall
step sizeAt by factors of Y2 and 23 (respectively) relative to th® = 0 value. Thus,
some of the examples presented below use smaller vald@dten indicated by (102). In
some cases, however, we find that values of GFL provide stable solutions [consistent
with (101) being only an approximation].

Assumptions underlying our plastic yield model require that&febe constant. The
differential equations describing our plastic flow mod&? preserves detP, but again
numerical errors will lead to some violation of this constraint. To remedy this problem v
renormalize the plastic deformation tensor at the end of each time step,

FP « (detFP)~Y3FP, (104)

8. EXAMPLES

8.1. Convergence: Elasticity

To demonstrate the convergence properties of the algorithm we model in 1D the smc
flow resulting from an initial Gaussian-shaped disturbance. For these computations we
a hyperthermoelastic model of the Mooney—Rivlin variety,

poE(C, ) = M )(Iog\/d 1C8)?2 + “(‘S) trce— “(23) log detC®

1 1
+ ;Otjo 0 (K + lyle_m,() (105)

whereS is the entropy. Entropy dependence is introduced by supposing

MS) = ho + 2 F(S) (106a)
w(S) = o+ s F(S) (106b)

where f (S) is an unspecified function of the entropy. From this equation we evalua
a(&, 9, FP, k), and other derivatives including the acoustic propagation tensors, by fi
solving this equation of state fdr(S) and then differentiating with respect to the elements
of C® while holding f (S) constant. We use valuggs = 1, 1o = Ao = 0.6, andus = As =
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0.01, with initial valuesgy = 1.11, ]—"3’ =1, x =0, andv = 0. The initial disturbance is
generated by distributing internal energy fréio £”,

E=&(g 7. 1(8)=0) (107a)
" = 10&. (107b)

These limiting values are used to construct a Gaussian initial profile, via
E=Ew +1A—w)E" (108)
with

Wj

1 r
- exp{—zaz}, (109)

wherea? = 100 is the variance of the distribution, and wherés the coordinate of the
center of celli, in the domain [0, 40]. Boundary conditions are reflecting at 0 and

r = 40. We pick the time stept to satisfy the Courant—Friedrichs—Lewy constraint (101)
with CFL = 0.8.

This problem was chosen to give a nontrivial shockless flow, with initial conditions th
strictly obeyG = 0. Plasticity is not incorporated into this test problem, and no flattenin
is required.

Figure 1 shows the initial and final conditions of this test problem in Cartesian geome
At this scale, the difference between results at 40, 80, and 160 Cartesian points is
resolvable.

A comparison of results using 40, 80, and 160 grid points is used to estimdte,the,
andL ., (max) norm rates of convergence using the volume-weighted variables (Table
In Cartesian geometry the method exhibits approximately third-order convergence: as
number of grid cells is doubled, the error diminishes by a factof 08fghtly lower rates
of convergence are seen in cylindrical and spherical geometries, but in all cases the c
exceeds 2.

1.35 Sy /

K -0.40
134 | N g
. . E

045 [
133 F ; § /

3 N 1 -0.50 |
b )
: 055
180 1
3 -0.60 |
129 f //
R t=0 —— =0 ——

t=10 - t=10
128 -0.85 .

Density p
P
R
Stress 6,

FIG. 1. Initial conditions and computed results using 160 cells in Cartesian geometry for (a) denaityg
(b) stressgyy.
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TABLE |
Convergence Test: Pure Elasticity

Geometry Field L, L, Lo
Cartesian P 3.33 3.24 3.06
Uy 3.02 2.97 2.89
Oxx 3.30 3.47 3.80
Oyys Ozz 2.95 2.91 2.69
Cylindrical P 2.51 2.68 2.80
vy 2.84 2.70 2.53
Oy 2.82 2.78 2.68
Oug 3.12 3.24 3.30
fo 3.22 3.17 2.97
Spherical P 2.42 2.53 2.66
vy 2.77 2.64 2.55
Oyt 2.85 2.78 2.79
o9+ Tpy 3.31 3.34 3.37

8.2. Convergence: Plasticity

To assess the rate of convergence in a plasticity-dominated flow we pose a model prot
similar to the purely elastic problem presented in (Fig. 2). A Gaussian distribution with wid

1.37 0.26 . . . .
a ] t=0 —— b ~ =0 ——
=10 - \ 1=10
1.36 1 -0.28 \\
\
1.35 1 030 F N\
\
S 134 g & 032 | \ .
z e \
& 139 - & 034r /\\ o =
o g S~ . N )
1.32 g 0.36 LT
1.31 g 038 | i g
130 . . . . . . . 0.40
0 5 10 15 20 25 30 3 40 0 5§ 10 15 20 25 30 8 40
X X
1.40
Cc 12 o d 3 =0 —
- =10 - : =10
110} . | 1.20
v
5 100
2% 1081 - 2
s g 080
g 1.06 g
£ A 2 o060
‘© [~
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2 T o040
-% =
2 102t e
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. .
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098 . . . . ) ) . 020 . . . . . . .
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b3 X

FIG. 2. Initial conditions and computed results using 160 cells in Cartesian geometry for (a) density,
(b) stressgyy; (€) plastic deformatioF?, ; and (d) work hardening parameter

XX!



EULERIAN GODUNOV METHOD FOR SOLID MECHANICS 155

TABLE Il
Convergence Test: Elastic—Plastic Flow

Geometry Field L, L, Lo

Cartesian 0 2.14 2.03 1.84
Uy 2.07 2.08 2.36
Oxx 1.99 1.93 2.12
oyy 1.62 1.55 1.21
Oy7 1.89 1.76 1.50
FP 2.01 1.80 1.60
]-'fy 2.18 2.08 2.10
FP 2.36 2.32 2.71
K 2.05 1.98 1.91

5 is used to vargyy andg,, as functions of coordinate according to

Oxxi = 11
Oyyi = (14911 (110)
Ozzi = 1~1/(1 ~+ Qwy)

with homogeneous initial density, internal energy, and zero velocity. We use the equatio
state (105) with yield model (62) and flow rates (63, 64). The equation-of-state parame
are as used in the purely elastic convergence test, and the plastic constitutive paramete
oy =0.1,9=0.1, andﬁl = 10.0.

The flow field in this problem i€°, which lowers the overall order of convergence. Den-
sity converges at greater than second order (Table Il), but the tangential stress compol
converge only at first order.

8.3. Blake’s Problem

Blake [3] presented an analytical solution to the problem of an unbounded solid medi
characterized by an isotropic linear elastic equation of state,

1 1
pof = ZAltr(C° — % + Zutr(CeTCe —2C°—1), (111)

loaded by a prescribed pressure boundary condition on the interior of a spherical cavit
initial radiusa. We present a numerical solution to this problem in 1D spherical coordinat
(see Appendix), with slight modification of the code to accommodate the moving bound
with prescribed flux (Neumann) boundary conditions. This problem is selected to verify 1
behavior of the elastic algorithm in the weak shock limit.

The cavity wall represents a material interface across which the mass flux will be ze
Accordingly, the flux at this boundary is given (U B) — sUB, whereU B is the vector
of conserved quantities at the boundasyis the velocity of the boundary, ang(U B)
is the radial flux vector evaluated at the boundary. Blake’s solution provi¢tes), the
displacement of a mass element in the radial direction. In spherical coordinates, this g
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rise to an inverse deformation tensor

(1+ du/ar)~1 0 0
gr.t) = 0 (14u/r)t 0 . (112)
0 0 L+u/r)~t

The velocity of the material interface $s= du/dt|;—a.

Cell 1, whose left boundary is = a att = 0, and whose right boundary is fixed at
a + Ar, has avolume which varies with time. Applying Gauss's divergence theorem to t
cell gives

VUM = VIUT + At((Ay2Frs % — AgaFSY?
+ Ac(HIEY2 = HILY?)) + AtV G2, (113)

whereF denotes the radial flux component that enterGLasz)a(rzF)/ar H denotes the
radial flux component that enters &bl /dr (see Appendix)A; is the average area?)
overr in [a—u(a,t),a+ Ar], Vy is the time- -averaged cell volume, aﬁiﬂ”/z is the
cell-centered vector of (geometric) source terms, which we time-center with a predict
corrector strategy.

In general (see Wilkins’s problem below), an algebraic solution of this discretization
unstable. Inthe particular case of our discretization of Blake’s problem, hoviegeert)| «
Ar and soV; does not vary appreciably with time and in particular is of omfexr . Our
solution to Blake's problem therefore uses (113) as written. Itis also necessary to modify
algorithm to account for the absence of cell valueis-atl andi — 2. The gradiendq/ar
ati = 1 is obtained by first order forward finite difference with a van Leer limiter. The
flattening parametey operates on a stencil that requires cell values at O-ahdHowever,
for this weak problem additional flattening is never required, so the algorithm is modifi
by omission of the flattening computation & 1).

Following Trangenstein and Colella[25] we use parametets).1 m, po = 3000 kg/n?,
A =236 x 10 Pa, andu = 2.78 x 10'° Pa. The pressure inside the spherical cavity is
10° Pa, and the solution is plotted at tim& 1 10 s.

We compare in Figs. 3—6 our computed results for radial stress,

o = (A +21)(0u/9r) + 20 (u/r), (114)
hoop stress
099 = 0pp = A(AU/Ir) + 2(A + pw)(U/r), (115)
pressure
P = —gon =1+ 5 awan) + 2m. (116)

and radial velocity, against Blake’s analytical results.

These results verify the method in the case of weak (linear) waves. The leading sh
is captured in approximately five grid cells. A single stress undershoot precedes the sh
and a corresponding overshoot follows it, but the wave speed and amplitude are corre
modeled.
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FIG. 3. o, calculated from Blake’s analytical solution at times & 10*, compared with values computed
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FIG. 6. Material velocityv, for Blake’s problem.
8.4. Wilkins’s Problem

Wilkins's flying plate problem [27] involves a 5-mm-thick aluminum plate impacting
an initially stationary aluminum halfspace. The rear (left) surface of the flying plate is
free surface (vacuum). Initially, left- and right-traveling shocks propagate outward frc
the point of contact of the plate with the halfspace. When the left-traveling shock reacl
the free surface, a right-traveling rarefaction is created, which ultimately overtakes
right-traveling shock. This problem incorporates plasticity.

To model this problem, we modify our 1D algorithm to allow for the moving free-surfac
boundary. This is an example of volume-of-fluid front reconstruction applied to multi-flui
modeling, and details will be described in a future correspondence. Briefly, we mod
the approach adopted for Blake’s problem using the flux redistribution ideas of Che
and Colella [4]. Application of this approach to stationary incompressible boundaries
described in [16], and to reaction front tracking in [1, 18]. Our implementation is simila
but the free-surface boundary moves at a velocity determined by the solid-vacuum Riem
problem. This problem is solved as described above for the solid—solid case but uses
the 3x 3 stress component of the eigenvectors. This interface velocity, and the surrounc
material velocities, are used with a volume-pushing algorithm (after [2]) to update t
fractional occupancy of the interface cells.

We construct a hyperelastic model of aluminum in close correspondence to Wilkin
(rate model) description, with

< p P) Mo e po\7?
(9. FP) = ——dp' ) + —(trc®—3( — : (117)
P 2po p
whereP (p) is the hydrostatic pressure (in GPa)
P(p) = 72(p/po — 1) + 1720/ po — 1)* + 40(p/ po — 1)°, (118)

with po = 2.7 kg/ne. The shear modulus jgsy=24.8 GPa. The problem is perfectly plastic
(no work hardening), and uses the von Mises yield surface function

2
f(o) = |devo| — \/;ay (119)
with constant flow stressy = 0.2976 GPa.
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Computations with impact velocities of 0.8 km/s (Figs. 7 and 8) and 2.0 km/s (Figs
and 10) were obtained with CEL0.80 and 500 Cartesian grid points. At 0.8 km/s, a
plastic shock trails a leading elastic shock precursor. When the left-facing shocks react
free surface, right-traveling elastic and trailing plastic rarefaction waves begin to overt:
the initial right-facing shocks. The shock stress at 2.0 km/s is above the elastic limit,
only plastic shocks are formed. On rarefaction from the left free surface, a leading rig
facing elastic rarefaction is formed, followed by the plastic wave. These results are in g
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guantitative agreement with those of Wilkins.

8.5. ATestin 2D

This test problem compares a 1D cylindrical coordinate computation against a
Cartesian result, for a problem with cylindrical symmetry. We use the modified Moone
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Longitudinal stressy, for Wilkins’s problem with impact velocity 0.8 km/s. Time jos.
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Rivlin model presented in Eqg. (70) with initial conditiops = 1,9 = 1.11, #° = |, and
x = 0. The plasticity parameters are¢ = 0.1, 99 = 0.1, and#; = 10. Allboundary condi-
tions are reflecting. The material is initially at rest, except for a cylindrical shell5, 15],

which moves toward the axis with a velocity eflL. This generates a diverging rarefaction,

and a convergent shock, which reflects off the axis of symmetry.
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FIG. 8. Mass density for Wilkins’s problem with impact velocity 0.8 km/s. Time jps.

In Figs. 11-15 we compare results from a 1D cylindrical calculation (500 cells,<€FL
0.8), and an equivalent 2D Cartesian calculation using 2250 cells, also at CFk
0.8. The 2D results are presented as 1D scatter plots in order to demonstrate the acc
preservation of cylindrical symmetry obtained with the spatially unsplit 2D method. Tt
high-resolution 1D results and lower resolution 2D results are in good agreement, altho
there is some discrepancyimando;, near the axis.

Using this same 2D test we demonstrate the errors associated with the gauge constt

p — podet(g) =0 (120)
and
G=vVxg =0. (121)

These conditions are enforced in the computation by way of a relaxation term to sati
(120) and a diffusion-like term to satisfy (121). In Fig. 16 we plot the left-hand side «
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FIG. 9. Longitudinal stressy for Wilkins’s problem with impact velocity 2.0 km/s. Time jis.

(120) comparing results from the computation presented in Figs. 11-15, and results f
a similar computation in which, however, neither a relaxation nor a diffusion correcti
was applied. In Fig. 17 we plot tHe, norm of the tensoW x g', comparing results from
the computation with relaxation and diffusion to results from a computation using neitt
correction. These figures demonstrate over an order of magnitude reduction in density ¢
is achieved by the relaxation mechanism. Approximately a factor of 2 reductit®| pfis
achieved by the diffusion mechanism.

8.6. A Testin 3D

This test problem compares a 1D spherical coordinate computation against a 3D Cs
sian result, for a problem with spherical symmetry. The equation of state is identical to
2D test above, and the initial conditions are similar: a spherical shel5, 15] is given
an initial velocity of —1. This computation, with 10& 100 x 100 cells at CFL= 0.8, is
underresolved. Nevertheless, there is good agreement between the 3D Cartesian resul
the 1D spherical calculation and excellent preservation of spherical symmetry (Figs. 18—
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9. CONCLUSIONS

We have presented a new method for the solution to equations of solid mechanics in «
two, and three spatial dimensions on Eulerian grids. Our method addresses the proble
gauge constraintd{ x g" = 0) by adopting a nonconservation approach first proposed k
[8] for the equations of magnetohydrodynamics. We write the partial differential equatio
of solid mechanics in such a way that the constraint, if applicable initially, holds true for :
time. The constraint is violated by the truncation error of the method, and reinforced w
an explicit diffusion term which annihilates the dipolar fieldvfx g'. Another constraint
of the system, a correspondence between density variation and the deformatiom field (
podetg) is also satisfied for all times by the PDEs, if satisfied in the initial conditions
Truncation errors of the method are compensated with an explicit relaxation term.

The method presented here does not incorporate artificial viscosity, but its solutions
sensitive to six adjustable parameteéPsandn control accuracy of the gauge constraints,
anday, ai, 29, andz; in Egs. (82) and (83) govern the introduction of dissipation nea
strong shocks to prevent overshoot and ringing by locally reducing the high-order Godul
method to first order.

Our strategy for damping modes violating the curl gauge constraint,

g :=g" —AVxVxg',
=g' +MVZT —V(V-g"), (122)
=g' + (V3" —V2Q(@")),

(A = AtD), uses a single central difference operator acting on cell-centered variables. Hi
Q(g") = V72V(V - g") is the projection onto the curl-free part gf . Defining P(x) =

1 — Q(x) as the projection onto the divergence-free past,aind notingP Q = QP = 0,

we have

P@") :=P(@") +AV*P(g"); (123)

thus we are diffusing the divergence-free pargbfwithout modifying the curl-free part.
A similar scheme may be used to modify a vector fi@ldsubject to a divergence-free
constraint,

B:

Q(B):

B+AV(V-B),

(124)
Q(B) 4+ AV2Q(B)

with a single matrix-valued central difference operator for the projedticdn - B). This will
directly target odd—even and checkerboard short-wavelength modes Bfby diffusing
the curl-free part oB. The application of this extension to magnetohydrodynamics, whe
B is the magnetic field subject to gauge constrainBdiv0, is currently being investigated
(R. Crockett, personal communication).

APPENDIX: CYLINDRICAL AND SPHERICAL COORDINATES

The equations of solid mechanics in cylindrical and spherical coordinates (like thc
of gas dynamics) differ from the Cartesian equations by the existence of both spatial
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volumetric spatial derivatives, and by the introduction of “geometric source terms.” T
coordinate transformation is accomplished by rotating the Cartesian basis vectors intc
curved coordinate frame via the rotation matrices

cosf —sing O
sin@ cos® O
0 0 1

I:zcyl = (A- 1)

sind cos¢p cosH cosyp —sing
singsing cosfsing cosp |,
cosf —sing 0

Rsph == (A.2)

where we adopt the standard curved coordinate notation

X =T cosf

y =rsiné (A.3)

z=72
in cylindrical coordinates and

X = r sin@ cos¢

y =r sind sing (A.4)

Z =1 cosH

in spherical coordinatesk is the matrix of inner products of unit vectors in the curved
coordinate systen&,, and the Cartesian systesy R,z = €, - €5. These rotation matrices
transform the Cartesian tensdfsg, ando transform ascy = R ocarR, etc. and transform

the velocity vectow asvey = R vcart.
In cylindrical coordinates, the system of transformed equations may be written (cf. Eq

as

PUr 0
0 0 o PV
pv pPLYVr — Org _( 0 PLVVy — oey
pE Orz 0 pEvy —vTogy
g& pEu —v'og 0 0
K T 0 I I A D g
ot | 9e ror 0 or 0 r oo 0
pFPe 0 0 pFPe vy
pFPey FPp 0 FPp
i pFPe v 0 PFPeyvg
prre; pFPeu 0 pFPev
pK pFPesu 0 PK Vg

PKVr
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(A.5)

This equation does not include the detelaxation term, whose representation is unaf-
fected by the change in variables, nor does it includeithéfusion correction, which will
be described separately below.
Thereis some latitude in the partitioning of terms between the LHS and the RHS geome
source vector. This is particularly evident in the stress terms appearing in the momen
equations. The choice of representations described here was chosen in order that

cancellation betweesy, andogg occur in ther -momentum source term.
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The linearized equations of solid mechanics [cf. (28)], used in the constructian of
andR edge states, also has a geometric source vector. Expressed in terms of the prir
variablesy, but omitting stress components which are described later, we have

—puy
V24 0n /P — 0os/p
—Ur Vg + 2004/ p
orz/p

(vr 099 — Vy0r9)/ P

)

Ur Qor + V900 + v2002
—VrGrr — VG0 — V202
0

0
0 , (A.6)
0

T+ Fr
Py -Fﬁpﬁ -7
7
~7:6p9 - }-r'?
ove | —F5 —Fi
_‘szr
7
pvo| ~72
0
0

Sl

The stress evolution equations, used in the predictor steps of the method, are (pl:
source terms omitted)

o [ o [ 79 o (79 s [
ﬁ o€ +UrE oy +U(.;% o6 +UZE o€
oe, oe, oe, o€,

Are P Ur Ao 3 Ur A P Ur

= Ao “ar Vg + | Aw Y90 Vg + | A |- 5z Vg

-Azr Uz Az@ Uz Azz Uz
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+; (Az)zp — Vo (Az)ar

where the tensord are defined by (14).
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Theg relaxation term-D(V x Vxg")T, transforms in cylindrical coordinates as
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The transformed system of equations in spherical coordinates may be written as
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Again, the deg source term, not included above, is unaffected by the transformation
variables. The&; diffusion term is described separately below.

The geometric source terms in the vecsofcf. (28)] corresponding to the primitive
variablesy, but omitting the direction-dependent stress terms, are

—p(2vr + cotbuy)
vg + vdz) + (2071 — 099 — 0p¢ + COtBOYp)/p
—vr vy + COtHV3 + (3079 + COtO (046 — 0gp)) /P
—Urvg — COtOVyvy + (307 + 2 COtH0w,) /0
(vr (099 + 0p¢) + Vo(—0pr + COtHOyy) — vy (oyr + COtATYy))/p

0
0
0

Ur Gor + Vo Goo + VpTog
—UrOr —Vo0rg — VpOrg
0
UrQpr + VaOps + VpUpe
COto (vr Gpr + Vo Gpo + VpUpe)
—VUrOrr — VgOrg — Ve Orgp — COLO (vr Qor + voUpo + Vg 0og)
vo (Fy + Far ) + vp (F + F5r)
o| vo(Fiy — FR) + vsFiy + cotbv, Fy,
vo Ty + vg(Fpy — FR) — cotou, Fly

Sl

Vg (\F@pg — J:r’?) + U¢.7:¢?0 + C0t9v¢.7-'r’;>
p| —vo (Y + Fit) + cotovy (Fj, + Fiy)
—voFpy — vy + cotOvy (Fiy — Fiy)
voFay + vy (Fpy — FR) — cotbvy 7
o| —ve G — veFi + cotov, (Fi, — Fiy)
—vy (Fhy + ) — cotbvy (Fhy + Foy)

0
(A.10)

The stress evolution equations, used in the predictor steps of the method, are (non
metric source terms omitted)

o6 3 o6 5 o6 5 o6
at | 7% | U\ 0% T | 0% ) T % singag | O

€ € o€ &

A 9 Ur Aro 9 Ur ~Ar¢ 9 Ur
= | Ao o vg | + | Age 190 v | + | Asg m Vg

Agr Vg Ago Vg Apg Vp
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[2(voorg + v4079) + vr (Arg)rg — vo(Arg)rr + (vr + v COtO) (Arg)rg
- U¢(Ar¢)rr - C0t9U¢(Ar¢)r9]
[—vo(orr — 099) + vy (09g + COtOTr4) + vr (Arg)os — vo(Aro)or
+ (vr 4 vp COtA) (Arg)og — Uy (Arg)or — COtOVg (Arg)asl
[U9(79¢ - Uzp(arr — Ogp + cotborg) + vr (Aro)ro — UO(Are)qbr
+ (ur + V9 COtO) (Arp)gp — Vo (Arg)rr — COtOVG(Arg)gol

[—vo(orr — 099) + V4 (09g + COtOGrg) + vr (Ago)ro — Vo (Ago)rr
+ (vr + v COtA) (Agg)rg — Vg (Aggp)rr — COtOVy (Agg)rol
[—2(vgorg — vy COtOTY,) + vr (Ase)oo — Vo (Age)or + (vr + vy COLO)
X (Aogp)ogp — Vg (Agg)or — COtOV,(Agg)oo]
[—vg0rg — Vg (079 + COtE (0p9 — Tpg)) + vr (Aga)ge — Vo (Asg)gr
+ (vr + vy COt@)(A9¢)¢¢ — U¢(.Ag¢)¢r — COt9U¢ (A,9¢)¢g]

Sl

[Voouy — V(01 — 0pg + COtOT9) + vr (Ago)ro — Vo (Agpo)rr
+ (vur + vp COtO) (Apg)rp — Vo (App)rr — COtOV, (Agp)ro]
[—voory — Vg (0rg + COtO (099 — 04¢)) + Ur (Agg)os — Vo (Aga)or
+ (vr + v cot0) (App)og — Ve (Apg)or — COtOVY (Agg)os]
[—2v4(0rg + COtOOye) + vr (Ago)go — Vo (Aga)gr + (vr + vg COLO)
X (Agp)gs — Vs (Agp)gr — COtOV, (Apg)ge]

Theg relaxation term-D(V x V xg")T transforms in spherical coordinates as

%0 320 3200 092Gy G 200

VxVxg))yy, = — ¢ _ _

(VX Vo) D rsingardg  r2sif0agp2  rorod  r2pe2 230 T 1200
_ 00pp  0Ge 209r 90 ¢ cotoag,

ror ror ' r2sinfag = r2sinfag  r2a0
cothagy ) 20, O cotdgy  2cotdgy

ror rz = or2 2 r2 r2
(A.123)
(V% ¥ x g1 o = g 3G PGy %Ge 3Gpp 200
T rarde  ar2 ' r2sinfagag  r2sireaZy  r2a0  rar
_ OGsr | CO0AGy | 20Gp Qs 9o
ror  r2sinfd¢  r2sinfo¢p  r2sinfad¢  r2
C0t99¢¢ cotOgye
- (A.12b)
9°gro 9Gry 9 grr Gy 0gss | 200y

VxVxgHhy=—= - - -
(VX Vxgh) g r2singofog r2062  rsinfardep ar? r200  r290

_ 0Qyr  20Gry  cOtHIgy  COtHAGy G )

ror rar  r2sinfag r2o0 r2sinfdgp  r?

Or¢ C0t99¢9 COt@gg¢
r2sir’ o r2 r2

(A.12c)
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02 92 02 92 20 9
(V x V x QT)T)er — O : Oor Oo9 2ge)rz _ 2grr 2909
rsinfardg  r2sirf0ag?  rards  r2962  r230 - r236
009~ 2cotH0gyr 00s¢ cotfogy  COt0dgsy
ror r2sinfo¢  r2sinfo¢ r200 ror
Cotgageg Oro Jor C0t99¢¢ COthgg
_— = — A.12d
ror r2 = r2sinfg r2 2 ( )
3%Qer  9°Qes 3oy 3°Goo 00 20000
VxVxgHhy = - : - _
(VX V>80 = 5056 ™ orz T r2sineacag  rZsiPeag? T ror | ror
2cotfagys  COt0adsy  COtHAUyg 90y
r2sinfdg  r2sinfog r296 r2sinfog
Op9  Ooe Qg Oo0 cotigrg
4+ == = _ - - A.12e
r2  r2  r2siP9  r2sinfe r2 ( )
92 92 92 92 20 29
(VX V xg) ey = - Qoo 2902 _ Gor ggq> _ Zgnp 2009
r<sinfofo¢ r<ao rsinfor d¢ ar r<06 ror
cotfogey  COtHOGse 906 Cothagyy  COtOIgy
r2sinfog r290 r2sinfag r296 ror
G0 , Gog 00 Oo¢p coto gy
- =+ = — A.12f
r2  r2  r2sirfd = r2sinfo r2 ( )
9°g 3°g 9°Qss  0°Upr | 9Gp0 , 09
VxVxg), — L% pr po 0" Qgr p o
(VX V> 8)Der = oingarap ~ resioag? | rarae  r2002 T rzae T rar
2cotfager 00p4 COtOdgyr 200, Cotoagys
r2sinfd¢p  r2sinfag r296 r2sinfog ror
cotfadsy = Org Ogr cotfgps  COLOGyy
— 4+ = A.12
ror r2 = r2sinfo r2 r2 (A-129)
d%g 320ge 3%g 3%0ge a9 20049
VxVxa), — pr 00y Qs _ o o 209y
(VX VX0 Don = 550~ “ar2 T r2sineacap  resieag? | 1200 rar
cotfdgys  2C0tHdgpe 2009 cotlddsy 2004
r2sinfo¢  r2sinfd¢p  r2sinfag¢ r296 r2
oo g 2cotogr
A.12h
ra2sirfd  r2sirf6 r2 ( )
92 92 92 92 d
(VX V x gD gy = Qo _ 29¢¢; O _ Qﬁcp 29r9
r<sin@ofo¢p r-=ob rsinfarog ar r<oo
28g¢¢ 00 C0t989¢9 COt989¢¢ Ccotf sy
ror ror  r2sinfa¢ r290 r296
Cot6H sy Jso o ;
+ - - - A.12i
ror r2sifé  r2sirfo ( )

We have implemented these equations in 1D, direatjamith only slight modifications

to the strategy described for Cartesian geometry. Schematically, we represent the ov

system of equations in the form

U
ot

JAF(U)
vV

oHU)
ar

G(g,r) + S(q). (A.13)
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Here we distinguish between the area-weighted volumetric flux telvAsand the spatial
flux termsH. The geometric source terms are representéd(ay r ), and the plastic source
terms areS(q). Note that in strict 1D+ flow, there is no angular dependence to any flow
variable, and therefore terms proportional to&@tor example) vanish identically.

As in the Cartesian case, we solve the time-centered edge Riemann problems to de
single-valued time-centered edge stde: 721/2. These edge states are then used to cor
struct the flux term$ andH, which are used to compute a preliminary updafe? via

the difference scheme

At At

umt=up - Vi(AiH/zFi?l/z — A12Ft ) — A_n( Sz — Hiy) o (AL4)

Next, we modify the preliminary update by inclusion of the geometric source terms. Ti
is made second-order using a predictor-corrector strategy,

Ui = L]in+l —+ AtG(qin, O'in)

n
oo () e a1
1 Tn+1 At n _n &~
0f =0+ = (G(al. o) + G o).

The plastic source terms are then evaluated at the half time step, giving the final result

~ 1 ~ I
G =3 (o +)
< B (A.16)
UMt = U/ + AtS@)
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